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Abstract— Automatic image annotation is an attractive service
for users and administrators of online photo sharing websites.
In this paper, we propose an image annotation approach that
exploits latent semantic community of labels and multikernel
learning (LCMKL). First, a concept graph is constructed for
labels indicating the relationship between the concepts. Based
on the concept graph, semantic communities are explored using
an automatic community detection method. For an image to
be annotated, a multikernel support vector machine is used
to determine the image’s latent community from its visual
features. Then, a candidate label ranking based approach is
determined by intracommunity and intercommunity ranking.
Experiments on the NUS-WIDE database and IAPR TC-12 data
set demonstrate that LCMKL outperforms some state-of-the-art
approaches.

Index Terms— Image annotation, multiple-kernel learning,
concept graph, community detection.

I. INTRODUCTION

W ITH the explosive growth of web images, image
annotation, which is beneficial to information

management, has attracted considerable attention in recent
years. Given an image, the goal of image annotation is to
analyze its visual content and assign labels to it. Different
from traditional classification problems, the number of labels
is quite large and label co-occurrence is fairly common in
image annotation. For example, it is highly likely that an
image associated with the concept ‘sea’ will also contain the
concept ‘sky’.
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In recent years, great research effort has been devoted to
automatic image annotation [1]–[11]. In general, approaches
for image annotation can be classified into two categories:
learning-based and search-based annotation [10].
In search-based annotation, the labels are directly provided
and annotated by utilizing images in the database. The
k-nearest neighbor (KNN) search (including the extended
algorithms) is widely used because of its simplicity and good
performance with large scale data [6], [8], [10], [12], [13].
When using KNN to annotate images, we find the nearest
images in the training set and label the target image according
to the labels of its neighbors. However, two issues must be
considered. One is ignorance of label co-occurrence, which
leads to low precision. Previous works [14]–[18] have shown
that co-occurrence plays a significant role in improving
precision. Admittedly, if a picture contains a concept
(i.e., labels/tags) like ‘sunshine’ or ‘sea’, it is very likely to
include the concepts ‘boat’, ‘sky’, and so on. The other issue
is the large size of the dataset, which leads to low efficiency
of KNN.

For learning-based methods, the annotation problem can
be considered a multi-class classification that predicts one
label from a set of exclusive labels, or a binary classification
that makes a binary decision on each label independently.
In previous work, researchers applied machine learning
methods such as the support vector machine (SVM) to
the annotation problem [19]–[22] and showed its good
performance with high dimensional data. In traditional image
annotation problems, the number of classes or labels is always
limited and samples of each class are often uniform. This can
be considered as a classification problem. However, there are
more than hundreds of labels (even millions) in an online
image dataset like Flickr. Since each image can be tagged
with many labels, this problem is no longer compatible with
a traditional classification model.

Recent works have found that community detection
achieves great success in social networks [23]–[26].
Papadopoulos et al. [26] presented an image clustering method
on a hybrid image similarity graph exploiting both visual and
textual features. We found that the connections between labels
are similar to a social network. In the same way that Latent
Dirichlet Allocation (LDA) [27], [28] finds topics in a bag of
words, the community detection approach divides the labels
into several communities. These communities reflect clustering
coherence well. More importantly, the number of communities
is much smaller than the number of labels thereby decreasing
the complexity of learning. In this paper, community detection

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



GU et al.: IMAGE ANNOTATION BY LATENT COMMUNITY DETECTION AND MULTIKERNEL LEARNING 3451

Fig. 1. For classification of ‘leaf’ and ‘flowers’, color moments and a color
histogram are more discriminative features than the wavelet feature. However,
since the colors of ‘flag’ and ‘fire’ are quite similar, texture features are more
discriminative.

is adopted to explore the latent semantics between labels.
When applying the community detection method to a
multi-label annotation problem, we should classify each input
image into only one most likely community (and sometimes
two communities) instead of multiple concepts. In this way,
community detection not only reduces the time complexity,
but also allows machine learning methods to be applied to a
multi-label annotation problem.

Another critical problem in image annotation today is the
diversity of the visual content of images, which leads to poor
performance of traditional visual representation. For example,
color histogram features play a more significant role than the
edge detection histogram and wavelet texture in discriminating
the two classes ‘flower’ and ‘leaf’ as shown in Fig. 1.
Therefore, adaptive selection of representative features is
important. Sonnenburg et al. [29] proposed a multiple-kernel
SVM (MKL-SVM) that assigns different weights to multiple
features for classification.

In this paper, we propose an image annotation method
using latent semantic community of labels and multi-kernel
learning (LCMKL). It is a general framework composed
with community detection, community classification and intra/
inter-community annotation. Given training samples, a concept
graph is first constructed with tagging information. Then,
concept communities are detected from the concept graph.
A community classifier is trained using a multiple-kernel
SVM based on the concept communities. For an untagged
image, the corresponding community is first determined by
the community classifier. Then, intra-community annotation
using a KNN is performed with training samples according
to the result of the community classification. As discussed
above, the MKL-SVM guarantees high accuracy classification
utilizing various features. Compared with traditional KNN,
the time complexity of the proposed method can be reduced
through feature selection by the MKL-SVM. Inter-community
annotation is finally carried out to provide complementary
image annotation.

The main contributions of our work are as follows:
• We propose a general framework exploiting latent com-

munity detection for image annotation based on posterior
probability and introduce the latent community concept.

• For community classification, we use an MKL-SVM
in the image annotation problem instead of an SVM.
Multiple features can be adaptively assigned weights
for better representation. Higher classification accuracy

guarantees that the following step can be implemented
successfully. It can be altered with stronger feature
representation and classifiers (e.g. Deep Learning
features) for better performance.

• To infer more relevant labels and avoid the negative
effect of hard community classification, we introduce
inter-community annotation to assign additional labels.
Thus, although some pictures may be classified into
incorrect clusters, they could still be labeled with the
correct tags after inter-community detection.

Compared with our preliminary work [30], several
improvements are made: 1) detailed steps for the LCMKL
are provided; 2) more experimental results and discussions
are provided including evaluation on the NUS-WIDE and
IAPR TC-12 datasets; and 3) systematic comparisons between
the proposed method and other methods are given.

The rest of the paper is organized as follows. Section II
reviews related work on image annotation, community detec-
tion, and MKL-SVMs. The framework adopted in this study is
presented in Section III. Offline learning and online annotation
are introduced in Sections IV and V, respectively. Experiments
and discussions are given in Section VII. Finally, we give our
conclusion in Section VIII.

II. RELATED WORK

Recently, numerous approaches have been proposed for
automatic image annotation. Makadia et al. [1] presented a
baseline for image annotation. For search-based annotation
methods, KNN is extensively used to annotate images with
labels. Given an untagged image, Zhang and Zhou [12]
proposed ML-KNN to annotate concepts. Based on statistical
information acquired from neighboring instances, the labels
of a given image can be determined. Besides, considering
the dependencies between labels, Younes et al. [31] proposed
a Bayesian version of KNN for multi-label classification.
In addition, to achieve greater accuracy, many works have
focused on ameliorating KNN [6], [10], [12], [13], [32], [33].
Tang et al. [6] proposed a KNN sparse-graph based semi-
supervised learning approach, while Wang et al. [32] presented
an image annotation approach based on weighted KNN. Based
on Wang’s work, Yu et al. [33] proposed a neighborhood
rough set based multi-label classification. The aforementioned
methods based on KNN fully consider the statistical infor-
mation and express its simplification and efficiency. However,
the accuracy precision is largely determined by the image set.
Much training sample information has not been mined.
Besides, these methods do not consider the latent community
of concepts, which lacks the association function. As is
commonly agreed, if we see the concept ‘sea’ in a part of
a given image, we would surmise that the image also contains
the concept ‘sky’, as determined by the associative function
of our brain [34].

Apart from the search-based approaches mentioned above,
several learning-based methods have also been proposed
for image annotation. Considering the similarity of image
annotation and classification, some researchers have adopted
classification algorithms. However, compared with traditional
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single-label classification that assigns an object to exactly
one class, the multi-label classification method should be
able to assign an image to one or more classes. Thus,
Elisseeff and Weston [35] proposed a multi-label SVM to
handle this problem. Zhang et al. [36] proposed a multi-label
naïve Bayes classification approach and gave the feature
selection. Thabtah et al. [37] introduced a new associative clas-
sification approach called multi-class, multi-label associative
classification, while Zhang [38] proposed the LIFT approach,
which constructs features specific to each label. These methods
usually consider each concept as a class [36]–[38] and label
the given image according to a confidence value. Compared
with KNN, these approaches take full advantage of the training
samples. However, since the connection between each pair
of concepts is ignored, more time is spent on the image
annotation problem.

Several authors [39]–[41] focused on multi-label,
multi-instance image annotation, which annotates a specific
region of an image precisely using corresponding tags.
In [39], correlations between textual concepts and visual
features are exploited for both global and local features.
A structural max-margin model was proposed to formulate
the classifier. In [39], the former work was extended by
deploying multiple-kernel learning approaches. Specific
kernels are additionally learned for pairs of inter-correlated
labels. For new data points, the similarity with training
sets can be computed by learning the eigen functions of
kernels in online mode. In [39], multi-label, multi-instance
image annotation was studied in multiple modals. The image
topic determined from the surrounding context is considered
in combination with traditional visual features and textual
features, while LDA is used to formulate the classification
model.

The focus in [39] and [42] is on the tag relevance estimation
problem. In [39], untagged images are assigned labels
through voting by the visual and tag relevant neighbors.
Li and Snoek [42] studied sample selection; positive
samples were selected through tag relevance, while negative
samples were selected by negative bootstrap instead of random
selection. In [43], an image annotation approach is proposed
to select some relevant tags with diverse semantics. More
recently, to reduce the time required or increase accuracy,
various researchers focused on feature selection or sample
selection in image annotation [7], [9], [10]. Tang et al.
presented semantic-gap-oriented active learning for multi-label
image annotation and used an active learning method to
create a sample selection [4]. Furthermore, Ma et al. [9]
used subspace-sparsity collaborated feature selection to reduce
noisy and redundant features. Liu et al. [10] introduced
graph-based dimensionality reduction for KNN-based image
annotation to solve the problems of high computational cost
and difficulty in finding semantically similar images.

III. MAIN FRAMEWORK

In this paper, we focus on the annotation problem in
which an untagged image can be assigned multiple labels.
Let X = {x1, x2, . . . , xn} denote the image collection,
where n is the size of the image set. For each image,

Fig. 2. Framework for the proposed LCMKL method consisting of
two parts: offline learning and online annotation.

several low-level features have been extracted. The features for
image xi are represented by vector pi = {pi,1, pi,2, . . . , pi,q },
where pi, j is the j -th feature of image xi , which is a vector
with dimension related to the feature type. Some of the images
have been annotated with tags from a concept (i.e., label or tag)
set C = {c1, c2, . . . , cm}, where m is the number of concepts.
The labels of an annotated image xi can be represented by
an m-dimensional binary vector Ti = {ti,1, ti,2, . . . , ti,m }. The
elements of Ti represent the presence of tags in xi . If image
xi is associated with concept c j , the value of ti, j is 1,
otherwise ti, j = 0. The task of image annotation is to deter-
mine the binary vector T for untagged images based on the
tagged ones.

An image annotation method, called LCMKL, is proposed
for image annotation by learning training samples based on
latent community and multi-kernel learning. Fig. 2 illustrates
our framework, which consists of two parts: offline learning
and online annotation.

• Offline Learning: Given the labeled training samples,
a concept graph is first created by exploiting the associ-
ation between concepts. Then, concept communities are
detected from the concept graph. Community classifiers
are trained using a multiple-kernel SVM based on the
visual features of training samples in each concept
community.

• Online Annotation: First, the corresponding community
of the untagged image is determined by the community
classifier. Then, intra-community annotation is performed
with training samples according to the result of the
community classification. Inter-community annotation is
finally carried out to provide complementary image
annotation.

IV. OFFLINE LEARNING

A. Concept Graph Construction

The first step in the proposed method is to construct a
concept graph based on the tagged images. In multiple-labeling
problems, co-occurrence of some concepts is common and
notable. For example, the concepts of ‘sky’ and ‘ocean’ are
simultaneously assigned to beach or seashore scenes. LCMKL
was designed for multi-labeling annotation with sufficient
concept co-occurrence in the dataset.
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Therefore, a directed-weighted graph G = {V , E} is
constructed. The elements of vertex set V are tags from
concept set C = {c1, c2, . . . , cm}. Concept ci is connected
with c j by a directed edge ei j if an image in the training set
is tagged with ci and c j at the same time. Let wi j denote
the weight of ei j . The weight of an edge implies the semantic
correlation between the two concepts and is determined as
follows, considering only their co-occurrence:

wi, j = P(c j |ci ) = N(ci , c j )

N(ci )
(1)

where P(c j |ci ) is the conditional probability of concept c j

given ci , N(ci ) denotes the number of images tagged with
concept ci in the image collection, and N(ci , c j ) denotes
the number of images tagged simultaneously with concepts
ci and c j . It should be noted that wi, j and w j,i are usually
not equivalent. This characteristic indicates the directionality
of the concept co-occurrence. If wi, j and w j,i are similar and
large enough, concepts ci and c j are likely to be annotated
at the same time. If wi, j is much larger than w j,i , the
object represented by ci may appear independently in different
scenes, and not only together with c j . For example, in the
NUS-WIDE dataset [44], 4933 images are tagged with ‘grass’
and 19052 images are tagged with ‘sky’. The number of
images tagged simultaneously with ‘sky’ and ‘grass’ is 3662.
P(‘sky’|‘grass’) and P(‘grass’|‘sky’) are 0.733 and 0.193,
respectively. The difference between the two probabilities is
intuitive. In general, when an image is associated with ‘grass’,
it is often related to an outdoor scene with blue sky and
wide-open grassland. Conversely, the concept ‘sky’ may
appear in other scenes like urban views or coastal landscapes,
which are not necessarily associated with ‘grass’.

For simplicity, in this section, the concept graph is modeled
only on the textual space. In our experiments, both visual and
textual information is taken into account in the construction of
the concept graph. Please refer to Section VII for the details.

B. Latent Community Detection

Traditional approaches for image annotation often adopt
binary classifications, e.g., ‘SVM + features’ to make a
binary decision independently for each label. However, this
approach does not capture the complexity of semantic labels
in the real world, where consistency between labels is ignored.
In addition, the number of classifiers can be quite large
since the semantic descriptions for images are rich and
diverse. Therefore, we adopt community detection to solve this
problem.

Concepts that often appear in the same scene or have
similar semantic characteristics are likely to be grouped in
the same community. The task of community detection in a
concept graph involves decomposing the graph into several
communities including a set of highly inter-connected nodes
with sparse connections between different communities.
The sparsely inter-connected and densely intra-clustered
communities guarantee clear semantic differences between
the communities and high correlation of intra-community
concepts. If an untagged sample is allocated to a specific

community, the concepts in that community are likely to be
candidate labels for the image.

Since the concepts are grouped into different communities,
we first find the community that is likely to describe the visual
content of the image, and then assign labels in this community
to the image.

The quality of community detection, which is critical,
is often measured by the modularity of the partition [24].
The modularity of a community is a real number between
−1 and +1 that measures the density of intra-community
links compared with inter-community ones. Given a concept
graph G = {V , E} partitioned into M communities, denoted
as S = {s1, s2, . . . , sM }, modularity Q is defined as the sum
of the community allocation status between concepts given as:

Q = 1

g

∑

1≤i, j≤|C |
{[wi, j − di d j

g
]δ1(ci , c j )}, g =

∑

i, j

wi, j (2)

where wi, j denotes the directed weight of the links between
concepts ci and c j , di = ∑

j wi, j is the sum of weights of
the links attached to concept ci , δ-function δ1(ci , c j ) is 1 if
concepts ci and c j are assigned the same community and
0 otherwise, g = ∑

i, j wi, j is the sum of all weights, and
|C| represents the number of concepts (usually |C| ≥ M ,
i.e., the number of concepts is greater than the number of
communities). Higher modularity of communities leads to
better partition quality, which is the objective function that
needs to be optimized in community detection algorithms.
In this paper, a fast unfolding algorithm [45] is applied to
realize latent community detection. This algorithm has proved
promising in generating proper communities with optimal time
complexity.

The latent community detection approach consists of
two phases. The first phase (i.e., the detection phase) involves
obtaining a local optimal modularity by maximizing the objec-
tive function given in Eq. (2). Based on the concept graph, each
concept is first assigned a unique community. Thus, there are
as many communities as concepts at this stage. For example,
for NUS-WIDE with 81 concepts, there are 81 communities
at this stage. Then, for concepts ci and ci,k from the set of
ci ’s directly connected concepts Ci,neighbor , try to remove
ci to the community to which ck belongs and recalculate
modularity Qk . The gain �Qk compared with Qk−1, which
is the modularity before the move, can be obtained as:

�Qk = Qk − Qk−1 (3)

Qk = 1

g

∑

1≤i, j≤|C |
{[wi, j − di d j

g
δk

1(ci , c j )]} (4)

where δ-function indicates whether the communities of
ci and c j are the same for the community scheme. Obtain the
maximum gain max{�Qk} for the trials. If max{�Qk} > 0,
which indicates an improvement in community modularity
after the adjustment, the current concept is assigned the
corresponding community with maximum gain of modularity.
Traverse all the concepts and repeat the trials until there is no
increase in modularity. After the community detection phase,
a local optimal resolution is attained and no individual move
of a simple concept can improve the modularity. Concepts are
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assigned the corresponding communities. In the second phase
(i.e., the rebuilding phase) of the algorithm, a new graph
G

′ = {V
′
, E

′ } is constructed. Nodes V
′

are now the com-
munities found in the first phase. The weight between new
nodes si and s j is calculated as:

wi, j−new =
∑

a,b

wa,bδ2(ca, si )δ2(cb, s j ) 1 ≤ a, b ≤ |C| (5)

where wi, j−new is the weight between new nodes si and s j ,
wa,b is the weight between concept ca and cb in the old
graph, the δ-function δ2(ca, si ) = 1 if ca belongs to si in
the first phase detection and 0 otherwise. Thus, wi, j−new is
obtained by obtaining the sum of the weights of links between
nodes in the corresponding two communities. Then, first phase
detection is applied to the newly built graph for higher
modularity. After a few rounds of the ‘detection-rebuilding’
iteration, the concept set C is clustered into M communities,
with each concept belonging to a unique community.

According to the community detection results, it should
be noted that each concept belongs to a unique community.
Some concepts like ‘sun’ and ‘sky’ are likely to be associated
with various scene co-occurrences from different communities.
In another words, it is better to assign these concepts to
multiple communities. Fortunately, the directionality of the
concept co-occurrence can help solve this problem with the
detailed solution given in Section V-C. The result of commu-
nity detection on 81 concepts can be found in the Appendix.

C. Multiple-Kernel Learning

1) Training Sample Classification: Given a tagged image xi

whose labeling vector is denoted by Ti , the corre-
sponding community is determined by a voting vector
Ns = {Ns,1, Ns,2, . . . , Ns,m} and element Ns,k is calculated as:

Ns,k =
∑

1≤ j≤M

ti, j δ2(c j , sk) (6)

where ti, j indicates the presence of concept c j in image xi

and δ-function δ2(c j , sk) is the same as in Eq. (5). Thus,
Ns,k represents the number of concepts belonging to commu-
nity sk . The community with the maximum Ns,k is assigned
to training image xi .

After community classification of the training samples has
been completed, each labeled training image in the training
set will have been associated with a unique community. The
next task is to generate a mapping from the low-level image
features to the community information, which is equivalent to
a classification problem. In this paper, a MKL-SVM model is
applied. For an untagged image, the MKL-SVM classifier first
determines the most probable community for it.

2) Multi-Kernel SVM Training: Classifiers trained with a
single visual feature are not robust or accurate in predicting
the community label of untagged images. The traditional
SVM model combines all visual features into a vector, which
leads to the dimensionality curse. Besides, it is highly likely
that features must be treated differently in specific classifying
scenes. For example, color histogram features play a more
significant role than edge detection histogram and wavelet

texture features in discriminating two communities, where
one includes ‘sky’, ‘water’, and ‘ocean’ and the other includes
‘grass’ and ‘tree’. Hence, different visual features should
have unique weights in classification. The multiple-kernel
SVM model can be trained with adaptively weighted combined
kernels where each kernel is associated with a specific type of
visual feature. The combined kernel is given as:

K (pa, pb) =
q∑

j=1

β j K j (pa, j , pb, j )

s.t. β j ≥ 0,

q∑

j=1

β j = 1, (7)

where K (·) is the combined kernel, K j (·) is the sub-kernel
for the j -th visual feature, and β j is the weight of
K j (·) to be learned. In addition, pa, pb are visual
features of images xa and xb, respectively, with
pa = {pa,1, pa,2, . . . , pa,q} and pb = {pb,1, pb,2, . . . , pb,q},
and q is the number of features. The constraints on β j are
so-called ‘L1-norm’ constraints that can generate a sparse
solution for sub-kernel weights. This can be useful for
feature selection in intra-community annotation as shown in
Section V-B. The binary decision function is determined as:

f (pl) =
ntrain∑

i=1

αi K (pi , pl) + b

=
ntrain∑

i=1

αi

q∑

j=1

β j K j (pi, j , pl. j ) + b, (8)

where pl is the feature of image xl , αi and b are support vector
parameters for each training sample, and ntrain is the number
of images in the training set. The output of f (·) denotes
the classification result. If f (pl) > 0, xl is classified as the
positive class; otherwise xl is classified as the negative class.
The basic task of the training step is to obtain the optimal
solution of sub-kernel β j , support vector parameter αi , and
the bias b of each binary classifier. The optimization problem
of binary classification is illustrated as follows:

min
1

2
‖ f (p)‖ + H

ntrain∑

i=1

ξi

s.t . f (pl) =
ntrain∑

i=1

αi K (pi , pl) + b

K (pi , pl) =
q∑

j=1

β j K j (pi, j , pl, j )β j ≥ 0,

q∑

j=1

β j = 1

ξi ≥ 0, yi , f (pi) ≥ 1 − ξi , i = 1, . . . , ntrain , (9)

where H is a penalty factor for classification (H > 0). Further-
more, the parameters including αi , β j , and b must be learned.
SimpleMKL, proposed by Rakotomamonjy et al. [46], has
been proved to be efficient for obtaining the optimal solution
for multiple-kernel learning problems. Thus, we adopted it for
training the classifier.
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V. ONLINE ANNOTATION

The online annotation process, shown on the left of Fig. 2,
consists of the following three steps: Given an untagged
image, the corresponding community is first determined by
the community classifier, which is trained, as explained
in Section IV, based on labeled training images. Next,
intra-community annotation is performed using training
samples belonging to the community identified in the
classification. Finally, inter-community annotation is carried
out to provide complementary image annotation.

A. Community Classification

The corresponding community for an untagged image xu is
determined by the trained community classifier. The fea-
tures of xu are deployed in the MKL-SVM classifier. Voting
for the most relevant class is based on the binary results
from the SVM. Let Nc = {Nc,1, Nc,2, . . . , Nc,M } denote the
voting vector for each community of untagged image xu . The
elements of Nc are determined by:

Nc,k =
∑

i

δ3( fsk−vs−si (pu)), (10)

where Nc,k denotes votes for community sk , fsk−vs−si (·) is the
binary function for classification between sk and si , pu is the
visual feature of untagged image xu , and δ-function δ3(·) = 1
if fsk−vs−si (pu) indicates that xu belongs to community sk

and 0 otherwise. The untagged image is assigned to the
top Z(Z ≥ 1) possible relevant communities with the highest
votes to cover more relevant labels. The proper selection
of Z , the number of most relevant communities, is discussed
in Section VII.

B. Intra-Community Annotation

The corresponding communities of an untagged image can
be determined by trained community classifiers. A naïve KNN
search is carried out to find the initial annotation in each
community based on the Euclidean distance between the
low-level features of the untagged image and those in the
community.

If the untagged image xu is classified into several
communities {sa, sb, . . .} by the MKL-SVM and
Xi = {xi,1, xi,2, . . . , xi,n} denotes the initial labeled
images belonging to community si in the training set, the
distance between xu and xi,k can be calculated by the visual
feature as:

d(xu, xi,k) = ‖p∗(xu) − p∗(xi,k)‖2, (11)

where p∗(x) is the combined vector of features of commu-
nity si with larger weights. The weight ¯βi, j of the j -th feature
in community si can be obtained from the binary functions
trained by the MKL-SVM associated with community s j . For
each feature pi , weight ¯βi, j is determined as:

¯βi, j = 1

M − 1

∑

k �=i

βk, j , (12)

where βk, j is the weight of the j -th feature of the binary
function associated with community sk . In the MKL-SVM,

each binary classifier (1-vs-1) is trained using a different
group of kernel weights, which implies different weights of the
low-level features. Features with large weights can represent
the community better. In this paper, a low-level feature with a
weight greater than the average is selected as the distinguished
feature of a specific community.

For the images in community i , the tagging status
can be represented as an m-dimensional binary vector
T i

j = {t i
j,1, t i

j,2, . . . , t i
j,m}( j = 1, 2, . . . , k) where m is the

number of concepts. It should be noted that intra-community
annotation only assigns the untagged image concepts in the
corresponding community. For untagged image xu and its
k-nearest neighborhood {xi,1, . . . , xi,k} with tagging status
{T i

1 , T i
2 , . . . , T i

k }, the confidence of each tag is generated as
vector Tp:

Tp = {tp,1, tp,2, . . . , tp,m}

tp,q = 1

k

k∑

j=1

t i
j,q (q = 1, 2, . . . , m)

T i
j = {t i

j,1, t i
j,2, . . . , t i

j,m} ( j = 1 . . . k), (13)

where each element of Tp is a real value between 0 and 1,
denoting the confidence of each label. T i

j is the label status
of the k-nearest neighbors.

C. Inter-Community Annotation

Various problems may arise after images have been
annotated with various concepts during intra-community
annotation. Intra-community annotation is carried out sepa-
rately on the top Z communities. In other words, potential
tagged concepts can only come from these Z communities,
and no others. Some concepts that are highly correlated with
the tagged ones, but do not belong to the top two communities
cannot be included. For example, certain concepts like ‘sun’
and ‘sky’ are associated with various scene co-occurrences
from different communities. However, they will belong to
a unique community after community detection, which may
lead to missing annotations in some cases. Therefore, an
inter-community annotation strategy is applied to compensate
for this deficiency. The link between concepts, which implies
co-occurrence, is characterized by directionality. For concepts
ci and c j , there is a large difference between wi, j and w j,i .
Unidirectional co-occurrence helps to obtain extra concepts
from a tagged one. If an image has been tagged with
ci and wi, j is much greater than w j,i , c j is likely to be the
concept that is theoretically shared by multiple communities
like ‘sun’ and ‘sky’. The inter-community strategy labels such
an image with c j .

In practice, for image xu tagged with concept ci after
intra-community annotation, finding ci ’s directly connected
concepts {cd,1, cd,2, . . . , cd,t } is based on the concept graph.
If cd, j is not a tag of this image and the conditional probability
P(cd, j |ci ) exceeds the confidence threshold, say 0.6, (further
discussion can be found in experiments), ci is the support
concept for cd, j and cd, j will be included in xu’s tags. The
confidence of the newly tagged label from concept ci is
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calculated as:

tcd, j ,ci = tci × P(cd, j |ci ) (14)

where tci is the confidence of concept ci of image xu after
intra-community annotation. If concept cd,k is supported by
multiple concepts, the final confidence of cd,k is the sum of
the support confidence of each concept:

tcd,k =
∑

i

tcd,k ,ci . (15)

VI. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
of LCMKL. In offline learning, we firstly detect the semantic
communities on concept graph. The time complexity of con-
structing concept graph is O(m2) where m is the number of
semantic concepts and the space complexity is O(m2). The
complexity of community detection is O(m2log2m) since the
iteration of community detection is similar to a hierarchical
clustering process. The space complexity of community detec-
tion is also O(m2). After community detection, all training
samples are assigned to specific community whose time com-
plexity is O(nmlog2m) where n is the number of training
samples and n � m. Therefore, it can be considered linear to
the number of training samples. Then, we train the multiple
kernel SVM based on the samples with multiple features. Since
we adopt 1vs1 strategy for learning community classifiers,
we have to train nc(nc − 1)/2 MKL-SVMs where nc is
the number of communities. However, it is hard to analyze
the computational complexity of MKL-SVM training. It is
related to the number of features and the number of training
samples in each community. We provide the training time of
MKL-SVM in Section VII-G.

In online annotation, the untagged samples are firstly
assigned to the most relevant communities by MKL-SVM.
After that, we will give the initial tags via intra-community
annotation which is actually a K-NN process in top M relevant
communities. If K-NN is boosted by KD-Tree, the time
complexity of building for all communities is O(ncncslog2nc)
where nc is the number of communities and ncs is the
number of training samples in each community. The time
complexity of annotation is O(Mnt log2ncs) where M is the
number of candidate communities and nt is the number of
untagged images. Therefore, the total time complexity of
intra-annotation is O(ncncslog2nc+Mntlog2ncs). The annota-
tion result is enhanced with inter-community annotation whose
time complexity is O(nt m2).

VII. EXPERIMENTS AND DISCUSSION

In this section, we discuss various experiments conducted
to validate the performance of the proposed method on the
NUS-WIDE [44] and IAPR TC-12 [47] datasets. A com-
parison of LCMKL and state-of-the-art methods JEC [1],
ML-KNN [12], ML-NB [36], RLVT [48], RANK [48],
TagProp [49], and NBVT [50] is also presented. JEC is
a neighbor-voting scheme where each feature contributes
equally to the image distance. NBVT is another neighbor
voting method for tag relevance estimation. TagProp is a

label propagation method based on neighbors. RLVT takes
the relevance between tags into consideration based on the
Google distance combined with low-level visual features.
RANK is an extension of RLVT using a random walk.
MLNB is a learning-based method. Principal component
analysis (PCA) or a genetic algorithm is adopted for feature
selection, while naïve Bayesian inference is used for label
allocation. ML-KNN is derived from the k-nearest method
exploiting Bayesian rules.

According to the latest progress in feature learning, we also
present various comparisons with stronger features including
the vector of locally aggregated descriptors (VLAD) [51] and
convolutional neural network (CNN) features [52]. The details
can be found in Section VII-E.

All the experiments were executed on a PC with an
Intel 2.4GHz CPU and 8GB RAM. Most of the algorithm
is implemented with MATLAB except MKL-SVM is imple-
mented with C++.

A. Datasets

NUS-WIDE dataset is a large-scaled real-world dataset
crawled from Flickr and used in many research studies in
recent years. Several low-level visual features are provided by
the founder of NUS-WIDE including color histogram
(CH-64D), color correlation histogram (CORR-73D),
edge-detection histogram (EDH-73D), block-wise color
moments (CM-256D), and wavelet textures (WT-128D). The
Lite version of NUS-WIDE dataset is composed of two parts:
the training part containing 27807 images, and the testing
part containing 27808 images. All images are tagged with the
concepts from 81 Ground Truth.

IAPR TC-12 dataset was used for the ImageClef Challenge
from 2006 to 2008. It consists of still natural images taken
from locations around the world and comprising an assorted
cross-section of still natural images. In this paper, we use
the features extracted by INRIA [49] including Gist (512D),
DenseHue (100D), HarrisHue (100D), DenseSift (1000D),
HarrisSift (1000D). The numbers of training and test sam-
ples are 17665 and 1962, respectively. The annotation model
is trained using the training part while the evaluation of
the model is based on the testing part. All visual features
are deployed for the compared methods. We also use the
pre-trained Deep Convolutional Neural Networks [53] and
VLAD [51] to obtain stronger features for further comparison.

B. Evaluation Criteria

In this paper, the F1-score and average precision (AP) are
used to measure the performance of the image annotation.
The F1-score measure is calculated as:

F1 − score(ci) = 2
Precision(ci ) × Recall(ci )

Precision(ci ) + Recall(ci )

Precision(ci ) = Ncorr

Ntagged

Recall(ci ) = Ncorr

Nall
(16)

where Ntagged denotes the number of images tagged with a
specific concept ci in the testing part by image annotation,
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TABLE I

PERFORMANCE COMPARISON ON NUS-WIDE 81-TAGS

Ncorr denotes the number of images tagged correctly accord-
ing to the original tagging information, and Nall denotes the
number of images tagged with ci in the training part. For fair
comparison, for each untagged image, the top five and
top ten relevant concepts are selected for annotation.

Average Precision (AP) [12], [36], which evaluates the
average fraction of labels ranked above a particular label,
is calculated as:

AP( f ) = 1

ntest

ntest∑

i=1

1∣∣GTi

∣∣
∑

GTi, j �=0

|{k|Ti,k ≥ Ti, j }|
pos(Ti, j )

, (17)

where ntest is the number of training samples, GTi is the
ground truth for image xi , GTi, j indicates the existence of
the j -th concept in the ground truth, Ti, j is the confidence
of concept j in image xi generated by LCMKL or the other
methods, pos(Ti, j ) is the ranking position of the j -th concept’s
confidence in descending order. The performance is optimal if
AP( f ) = 1. The greater the value of AP( f ) is, the better is
the performance.

C. Experiments on NUS-WIDE 81-Concepts

In this section, we present the performance of our method
and the compared methods. Based on the tagging information
of the training part, a concept graph is first constructed.
Nine latent communities are detected over the concept graph
using the community detection algorithm. The visual features
are adopted in the training of community classifiers based on
the MKL-SVM model. The optimal selection of sub-kernel
weights and SVM parameters is solved using the
shogun-toolbox 2.0 with the simple MKL algorithm [46].
According to the results of the community classification, the
optimal sub-kernel weights are also obtained.

The most discriminative visual features are color moments
and the color correlation histogram since their weights are,
respectively, 0.62 and 0.22 on average in MKL. They are
combined into a feature vector for intra-community annotation.
In intra-community annotation, the number of nearest neigh-
bors K is 50 and the confidence threshold for inter-community
annotation is 0.6. For NBVT, the best performance is achieved
with the number of neighbors set to 50. The annotation results
are presented in TABLE I.

TABLE I shows the performance of LCMKL and other
methods. According to the results, we see that the proposed
method outperforms both the F1-scores with the top
five (Top 5) and top ten (Top 10) relevant tags and AP values
of the compared methods. The F1-score for LCMKL is 0.324

for the Top 5, which is much higher than the values for
the other methods. LCMKL also yields the best AP value.
We also test LCMKL on NUS-WIDE 81Concept for 10 times.
The performance is stable that the AP is 0.668 ± 0.01 and
F1-score is 0.324 ± 0.02.

With an increasing number of tags, the F1-score, of Since
the average number of labels for images in the NUS-WIDE
81-Tag dataset is 4.2, annotation performance is stable with
more than five tagged labels. The average F1-score of LCMKL
remains at about 0.33, which is 30% higher than for NBVT
and 50% higher than for RANK, MLNB, and RLVT.

In addition, we found that the AP for each concept using
LCMKL suffers a slight loss after the inter-community process
(dropping from 0.3185 to 0.2941), while recall increases by
more than 18.8% (0.3032 to 0.3601). In general, the recall
of each concept increases after inter-community annotation.
For the most improved concepts ‘sky’ and ‘clouds’, the recall
values are, respectively, 0.675 and 0.493 higher than the
results without inter-community annotation. The improvement
is associated with the number of relevant instances and training
samples for classification. For NUS-WIDE with 81 concepts,
there are 27807 images in the training part. The training
images are re-annotated according to the results of community
detection and their original tagging information. The number
of images initially annotated with ‘sky’ is 19052. Only 5942 of
these, however, are grouped in the specific community that
includes ‘sky’, since ‘sky’ is very common in outdoor scenes.
Images with tag ‘sky’ are not always densely semantically
correlated, with several images scattered in other communities.
According to the procedure for intra-community annotation,
only test images classified as a specific community can be
tagged with ‘sky’. With the help of inter-community anno-
tation, those concepts semantically correlated with ‘sky’ but
not belonging to the specific community can lead to the
recognition of ‘sky’. For images in the NUS-WIDE 81-Tag
dataset, the average number of tags is 4.2. If the number of
tagged concepts is increased to ten, more true tags are likely
to be covered. Inter-community annotation does not improve
recall performance markedly.

D. Performance on IAPR TC-12 Dataset

In the evaluation using the IAPR TC-12 dataset, the
visual features for LCMKL are grouped into two conditions:
global features only (Gist + DenseHue + HarrisHue) and
global-local mixed features (Gist + DenseHue + HarrisHue +
HarrisSift + DenseSift). Since local features are not avail-
able for the Lite version of NUS-WIDE, we evaluated the
performance thereof using the IAPR dataset. For the com-
pared methods, Global-Local Mix features are used. For the
F1-score, the number of relevant tags is set to ten because
the average number of tags in a single image is 5.7 in the
IAPR dataset. The detailed results are shown in TABLE II.

According to the F1-score, LCMKL outperforms the other
methods irrespective of whether global features only or
global-local mixed features are used. Nevertheless, the local
features boost LCMKL to achieve a higher AP than the
other methods. The results also demonstrate that local features
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TABLE II

PERFORMANCE COMPARISON ON THE IAPR TC-12 DATASET

TABLE III

COMPARISON WITH STRONGER FEATURES

can improve the performance of LCMKL. Note that with
the exception of LCMKL-Global, all the other approaches
used mixed features like those in LCMKL-Mix. We also test
LCMKL on IAPR TC-12 for 10 times. The performance is
stable that the AP is 0.321±0.02 and F1-score is 0.180±0.01.

E. Comparison With Stronger Features on IAPR TC-12

According to the recent works of Razavian et al. [52], the
feature extracted by deep CNNs shows good performance on
classification, detection, and recognition tasks. In this section,
we adopt stronger features including VLAD [51] and the CNN
feature [52] for comparison using the IAPR TC-12 dataset.
According to the default setting in the Vl-Feat Library that
implements VLAD using MATLAB, the number of visual
words is 64. Therefore, the dimension of the VLAD feature
is 6400D. For the CNN feature, we refer to the structure
established by Krizhevsky et al. [53], which is a multi-layer
deep CNN. The network is pre-trained using 15 million images
from ImageNet. The output of the fc-7 layer, which is 4096D,
is adopted for the DeepNet feature. In this paper, the dimension
of the CNN feature of an image is 4096D and that of VLAD
is 6400D.

We designed two sets of experiments:
1) We replaced the MKL part for community classifica-

tion with a single-kernel SVM and either the CNN
feature or VLAD to demonstrate the performance of
our main framework (denoted by ‘CNN+LCMKL’ and
‘VLAD+LCMKL’, respectively). According to Fig. 2,
the community classifier is trained after latent com-
munity detection using the CNN feature or VLAD for
classifying the untagged image as a specific community.

2) We trained binary classifiers for each concept using
a Linear SVM and either the CNN feature or VLAD
to make binary decisions on the existence of con-
cepts (denoted by ‘CNN+LSVM’ and ‘VLAD+LSVM’,
respectively).

The performance is given in TABLE III.
Since VLAD and the CNN feature are stronger features

than previously used, they perform better than the original
LCMKL. According to the report by Razavian et al. [52],
‘Linear SVM + CNN feature’ achieves good performance on

TABLE IV

PERFORMANCE COMPARISON WITH A HYBRID GRAPH SCHEME

AND TEXTUAL GRAPH SCHEME

classification and recognition. In fact, we found that the AP
of ‘Linear SVM + CNN feature’ is almost the same as that
of the original LCMKL, while the F1-score is greatly superior
to that in the original method. However, the performance of
‘VLAD + Linear SVM’ is similar to the original LCMKL
in terms of F1-score, but not in terms of AP. In addition, we
found that ‘Feature + SVM’ does not perform well in terms
of AP, but has a good F1-score. The reason for this is that the
LSVM only produces a binary classification and not a ranking
result; AP, however, considers ranking relevance.

F. Parameter Tuning and Discussion

1) Weight of the Concept Graph: As mentioned in
Section IV-B, the weight of the concept graph is only depen-
dent on the number of co-occurrences between the concepts,
which considers only textual relevance. However, the features
of concept co-occurrence can also be reflected by low-level
image features tagged with a specific concept. In this section,
we incorporate the image features into the weight of the
concept graph and evaluate the performance thereof. In our
method, a directed-weighted graph G = {V , E} is constructed.
The elements of vertex set V are tags from concept set
C = {c1, c2, . . . , cm}. Two concepts ci and c j are connected
by edge ei, j and the weight of ei, j is calculated as:

wi, j = P(c j |ci ) = N(ci ∧ c j )

N(ci )
. (18)

To incorporate the low-level image features into the weight of
the concept graph, the image distance between the directly-
connected concepts is given by:

dimg(ci , c j ) = ‖ f ci
avg − f

c j
avg‖ (19)

f ci
avg = 1

‖xi,t j,i =1‖
∑

xi,t j,i =1

fi (20)

where f ∗
avg is the mean of the low-level features of concepts

used to tag the images, while the distance between the
concepts is measured by the Euclidean distance between the
means of the low-level features. Then, the image distance is
normalized as a real number between 0 and 1 and combined
with the textual distance:

wi, j = λdimg(ci , c j ) + (1 − λ)dtextual(ci , c j ), (21)

where λ is the adjusting parameter between the textual distance
and image distance. The annotation results on NUS-WIDE
81-Tags with varying values of λ are given in TABLE IV.

As shown in TABLE IV, when λ = 0.2, the final F1-score
of LCMKL is 0.3251, which is a little higher than that for the
simple textual scheme. As the weight of the image distance
increases, the performance of LCMKL deteriorates.
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TABLE V

COMPARISON OF THE PERFORMANCE OF LCMKL WITH DIFFERENT

COMMUNITY DETECTION ALGORITHMS

2) Performance of Different Community Detection Methods:
In this section, the selection of the community detection
method is discussed. The community detection methods
proposed by Ronhovde and Nussinov [54] (denoted as
LCMKL-RN) and Arenas et al. [55] (denoted as
LCMKL-AF) were chosen for comparison. The fast
unfolding algorithm deployed in this paper is denoted as
LCMKL-BV [45]. The performance on the NUS-WIDE
81-Tags is shown in TABLE V. We find that the LCMKL
approaches achieve better performance.

As shown in TABLE V, the community detection method
used in this paper helps LCMKL achieve the best performance
compared with LCMKL-AF and LCMKL-BV. The reason
for this is that LCMKL-BV generates the correct community
detection for concepts at a semantic level and the number
of training samples in each community is more uniform than
for LCMKL-AF and LCMKL-RN. Since the performance of
the SVM-like learning methods is largely influenced by the
uniformity of the number of training samples in the positive
and negative classes, the uniform training sample assignment
by LCMKL-BV leads to better performance.

3) Latent Community Detection and Topic Models: LDA
was initially proposed for document classification and later
extended to image classification. Irrespective of whether it is
used for document classification or image annotation, LDA
requires fairly high-dimensional features. In [28], the image is
pre-segmented into eight regions and 40 features are calculated
for each region. In another words, the training data must be
elaborately pre-processed to ensure each image contains a
large number of ‘words’. Another method for generating the
words for an image is to use local features (e.g., SIFT and
SURF). However, latent community detection can be carried
out using only the concept graph containing information about
concepts and links for tag co-occurrence. We do not have to
pre-segment the image and tag each region with a specific
label.

We tested the performance of LDA replacing latent com-
munity detection as discussed in Section IV-B on the
NUS-WIDE dataset with 81 tags. Since the images are
assigned some tags (with no region information or even
local features available), the words for images are given as:
‘{Image1: cat: 1; grass: 1}; {Image2: people: 1}. Nine topics
(each concept is allocated a max priori probability) are
identified based on the tag information. The F1-score of
the alternative version of LCMKL (where latent community
detection is replaced by LDA) is 0.042, which differs greatly
from that of community detection.

We also tested the performance of Labeled-LDA [56] and
CorrLDA on the IAPR dataset since local features are avail-
able in this dataset. The codebook generated by DenseSift

TABLE VI

COMPARISON OF THE PERFORMANCE OF LCMKL WITH A

VARYING NUMBER OF RELEVANT COMMUNITIES

TABLE VII

PERFORMANCE COMPARISON WITH DIFFERENT PENALTY COEFFICIENTS

was used as words for the LDA. After 3,000 iterations, the
F1-score and AP for Labeled-LDA were 0.0197 and 0.0445,
respectively, while CorrLDA yielded 0.039 as the F1-score
and 0.249 as the AP. Although CorrLDA does not reflect
the most relevant tags, ranking of some weakly-relevant tags
is performed well. Therefore, the AP for CorrLDA is not
as bad as its F1-score. This result corresponds with that
reported in [1] where CorrLDA does not perform well on the
Corel5K dataset. We refer to the conclusion in [57]. Previous
LDA-based topic models for image annotation all operate
under the Dirichlet assumption, where each topic proportion is
assigned independently, which leads to an unrealistic limitation
that the presence of one topic is not correlated with the
presence of others. This is the main problem with LDA-based
approaches.

4) Parameters for Multiple-Kernel Learning: As mentioned
in Section V-A, an untagged image is assigned the top Z
relevant communities by the community classifier. Selection
of the number of relevant communities is discussed in this
section. The performance of LCMKL on NUS-WIDE 81-Tags
with the top 1, top 2, and top 3 (i.e., Z = 1, 2 and 3) relevant
communities is given in TABLE VI. Each untagged image is
tagged with five recommended tags.

In TABLE VI, LCMKL with the top 2 relevant communities
achieves the best performance in terms of F1-score. When
only assigned the most relevant community, the untagged
image is not associated with certain concepts that are shared
by multiple communities at the semantic level. Instead, it is
only assigned one community by the community detection
algorithm. If these concepts were not complemented by inter-
community annotation, the performance in terms of recall
would suffer greatly. However, as the number of relevant
communities increases, the performance is affected by the
accumulated tagging noise in multiple communities. Extra
communities with large numbers of training images are likely
to take over the top position in tagging relevance. Therefore,
Z = 2 is relatively optimal for the NUS-WIDE dataset.
We also tested the performance of LCMKL with various
values of the penalty coefficient H in the objective function of
MKL-SVM given in Eq. (9). The results for H = 0.05,
0.5, 5, 50, and 500 are given in TABLE VII.

The table shows that the performance of LCMKL does not
change greatly with different values of H . With H set to 0.5,
LCMKL achieves the best performance.
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TABLE VIII

PERFORMANCE COMPARISON OF THE MKL-SVM, SKL-SVM,

AND LIBLINEAR ON NUS-WIDE

TABLE IX

PERFORMANCE COMPARISON BETWEEN MKL AND SKL

TABLE X

THE PERFORMANCE GAIN FROM INTER-COMMUNITY ANNOTATION

5) Multiple-Kernel Learning vs. Single-Kernel Learning:
In this section, we replace the MKL-SVM in LCMKL with
LIBLINEAR [58] and a single-kernel SVM (SKL-SVM) [59]
and test the performance on the NUS-WIDE 81-Tags dataset.
For LIBLINEAR and SKL-SVM, image features are combined
into a feature vector for each image and the remaining steps
of the image annotation process are the same as those for
LCMKL. The top 2 relevant communities (i.e., Z = 2) are
selected according to the probability estimation of SKL-SVM
and LIBLINEAR. The results are shown in TABLE VIII.
Compared with the single-kernel SVM and LIBLINEAR,
the MKL-SVM achieves a higher AP and F1-score on the
NUS-WIDE dataset. Moreover, testing time is reduced since
MKL does feature selection for intra-community annotation.

We used the IAPR TC-12 dataset with five visual fea-
tures (Gist, DenseHue, DenseSift, HarrisHue, HarrisSift) for
evaluation since it provides stronger visual representation.
Three different combinations were adopted as follows:

a. DenseSift only (denoted by ‘DS’)
b. DenseSift+ DenseHue as a long vector (denoted by

‘DS+HS’)
c. All five visual features as a long vector (denoted by

‘All’)
The performance on the IAPR TC-12 dataset is given in
TABLE IX. We can see that the single-kernel SVM with
all five visual features achieves almost the same performance
as MKL. However, MKL is used not only to achieve better
performance in community classification, but also to boost
the intra-community annotation process. We use the optimal
selection of visual features in each community to find the
nearest neighbors.

6) Intra-Community vs. Inter-Community: As mentioned
in Section V-C, the inter-community annotation strategy is
applied to compensate for this deficiency. We find that the
performance gains from the inter-community annotation both
on NUS-WIDE and IAPR TC-12 as shown in TABLE X.

Fig. 3. Average F1-scores for LCMKL with different inter-community
annotation thresholds.

In TABLE X, ‘Intra-only’ denotes that LCMKL is
conducted without inter-community annotation while
‘Intra+Inter’ is the result after both intra and inter community
annotation. The performance of LCMKL on NUS-WIDE and
IAPR TC-12 is boosted by inter-community annotation.

7) Threshold of Inter-Community Annotation: As men-
tioned in Section V-A, for concept ci tagged after
intra-community annotation, LCMKL finds its directly con-
nected concepts {cd,1, cd,2, . . . , cd,t } based on the concept
graph. If cd, j is not tagged to this image and the condi-
tional probability P(cd, j |ci ) exceeds the confidence threshold
(e.g., 0.6), this concept will be included. Experiments on
NUS-WIDE 81-Tags have demonstrated that inter-community
annotation helps improve both recall and the F1-score of the
final annotation. However, the value of the confidence thresh-
old is pre-defined and it is likely to influence the performance
of inter-community annotation. In this section, the impact of
the confidence threshold is discussed.

Varying the confidence threshold between 0.1 and 0.9, we
tested the performance with different numbers of tagged rele-
vant concepts (top 3 to top 8). The results of the experiments
are illustrated in Fig. 3.

When tagged with five concepts or fewer, the performance
tends to improve with an increase in the confidence threshold,
which satisfies the purpose of inter-community annotation.
Inter-community annotation is applied to solve the problem of
the omission of certain concepts like ‘sun’ and ‘sky’, which are
assigned only one community, but are semantically associated
with multiple communities. A basic feature of unidirectional
concept co-occurrence is the large difference between wi, j

and w j,i . A lower confidence threshold leads to falsely tagged
images. If the number of tagged labels is greater than five, the
confidence threshold does not obviously affect performance.
As mentioned above, for images in the NUS-WIDE 81-Tags
dataset, the average number of tags is 4.2. If the number
of tagged concepts is increased to ten, it is more likely to
cover more true tags. Inter-community annotation does not
significantly improve the performance in terms of recall.

8) Parameter Settings for Intra-Community Annotation: For
intra-community annotation, we varied the number of near-
est neighbors K in KNN. The performance on NUS-WIDE
81-Tags with varying values of K (K = 10, 30, 50,
100, 150, 200) is shown in TABLE XI. As the value of
K increases, the performance deteriorates slightly. However,
different numbers of nearest neighbors do not obviously affect
the final performance of LCMKL. This is because the support-
ing confidence tp,q of each concept in Eq. (13) is averaged by
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TABLE XI

PERFORMANCE OF LCMKL WITH VARYING NUMBERS

OF K -NEAREST NEIGHBORS

TABLE XII

COMPARISON OF THE PERFORMANCE OF THE FULL FEATURE

SCHEME AND OPTIMAL FEATURE SCHEME FOR

INTRA-COMMUNITY ANNOTATION

TABLE XIII

RUNNING TIME OF EACH STEP IN LCMKL

the number of nearest neighbors. Therefore, an increase in
nearest neighbors does not affect performance.

As mentioned in Section V, low-level features with a weight
greater than the average are selected as distinguished features
of a specific community. Then, naïve KNN annotation is
performed in each community with the most distinguished
features. The performance of the optimal feature selection
and the full feature selection on NUS-WIDE 81-Tags is given
in TABLE XII. For the full feature scheme, five low-level
features are combined into a vector as a visual feature of the
image.

As shown in TABLE XII, the optimal selection of visual
features achieves similar performance in terms of F1-score to
the full feature scheme. However, the time required for the
testing part on NUS-WIDE using the optimal feature scheme
for intra-community annotation is only 0.1396 sec, which
is much quicker than using the full feature scheme with a
computation time of 0.3466 sec.

G. Running Time

The theoretical analysis on the complexity of LCMKL
is presented in Section VI. We provide the running time
of LCMKL on NUS-WIDE-Lite dataset in TABLE XIII.
We use 27,808 samples for training and 27,807 for testing.
The training time in TABLE XIII is calculated over the whole
training procedure on 27,808 samples while the testing
time is the average value on single sample. The most
time-consuming steps are the training of LCMKL and

TABLE XIV

COMMUNITY DETECTION ON 81 CONCEPTS FROM NUS-WIDE

Intra-community detection. However, they are implemented
with different type of code. We believe that the
efficiency of LCMKL can be enhanced with more optimization
on code.

VIII. CONCLUSION

In this paper, we proposed the LCMKL framework for
automatic image annotation. Our work integrates community
features of multi-labeled images with multiple-kernel learn-
ing. A concept graph is constructed, which implies a dense
semantic intra-community correlation of concepts. A robust
multiple-kernel SVM is applied for community classification.
Intra-community annotation makes initial decisions for label
assignment. The final tagging performance is improved by
inter-community annotation.

To evaluate the performance of our method, we applied
our method to various experiments on the NUS-WIDE and
IAPR TC-12 datasets. From the results of the experiments, it
can be seen that our method outperforms classical and state-of-
art methods for image annotation which is boosted by semantic
communities. By introducing stronger visual representation
(e.g. VLAD and DeepFeat), LCMKL is also proved a general
framework which can be adapted with different features and
classifiers flexibly.

APPENDIX

RESULT OF COMMUNITY DETECTION

We provide the result of community detection on
NUS-WIDE dataset with 81 concept as shown in TABLE XIV.
“COM i” (i = 1, . . . , 9) is short for i th community. The num-
ber after “COM i” is the number of concepts in the community.
Since the number of images tagged with “map” is lower
than 10 in NUS-WIDE dataset, there are only one concept
in COM 9. We can find that the intra-community coherence is
quite promising. Since the intra-community annotation step
assigns the tags to images only from the community, the
precision can be largely enhanced.
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